cho hàm số f(x)=0 có f(0)=0 và f'(x)=sin(x)^2.cos4x.Khi đó tích phân từ pi/2 đến 0 của f(x) bằng
Anh TrúcTeacher
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Đáp án:
$\begin{array}{l}
f’\left( x \right) = {\sin ^2}x.cos4x\\
= \dfrac{{1 – \cos 2x}}{2}.\left( {1 – 2{{\sin }^2}2x} \right)\\
= \dfrac{1}{2} – \dfrac{1}{2}.\cos 2x + {\sin ^2}2x.\cos 2x\\
\Rightarrow f\left( x \right) = \int {\left( {\dfrac{1}{2} – \dfrac{1}{2}\cos 2x + {{\sin }^2}2x.\cos 2x} \right)dx} \\
= \dfrac{1}{2}x – \dfrac{1}{4}.\sin 2x + \int {\dfrac{1}{2}.{{\sin }^2}2xd\sin 2x} \\
= \dfrac{1}{2}.x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}.{\sin ^3}2x\\
\Rightarrow \int\limits_0^{\pi /2} {f\left( x \right)dx} \\
= \int\limits_0^{\pi /2} {\left( {\dfrac{1}{2}x – \dfrac{1}{4}\sin 2x + \dfrac{1}{6}{{\sin }^3}2x} \right)dx} \\
= \left( {\dfrac{1}{4}{x^2} + \dfrac{1}{8}\cos 2x} \right)_0^{\pi /2} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {{{\sin }^2}2x.sin2x.d2x} \\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{8} – \dfrac{1}{8} + \dfrac{1}{{12}}.\int\limits_0^{\pi /2} {\left( {{{\cos }^2}2x – 1} \right).d\left( {\cos 2x} \right)} \\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{1}{3}{{\cos }^3}2x – \cos 2x} \right)_0^{\pi /2}\\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{1}{4} + \dfrac{1}{{12}}.\left( {\dfrac{2}{3} + \dfrac{2}{3}} \right)\\
= \dfrac{{{\pi ^2}}}{{16}} – \dfrac{5}{{36}}
\end{array}$