1/cho x,y là 2 số thực thỏa x + y=1 . tìm GTNN của A = $x^{3}$ + $y^{3}$ + $xy$ + $1$
2/cho a+ b + c =0 : CMR $a^{3}$ + $b^{3}$ + $c^{3}$ = $3abc$
Ngọc DuyênTeacher
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
`1)`
Có `A=x^3+y^3+xy+1=(x^3+y^3)+xy+1=(x+y)(x^2-xy+y^2)+xy+1.`
Thay `x+y=1` vào `A` ta có:
`A=x^2-xy+y^2+xy+1=x^2+y^2+1.`
Có: `x^2-2xy+y^2 \ge0 ⇔ x^2+ y^2 \ge 2xy ⇔ 2(x^2+y^2) \ge x^2 + 2xy + y^2 = (x+y)^2 = 1^2 =1.`
`⇒ x^2 + y^2 \ge 1/2.`
`⇒ A \ge 1/2 + 1 = 3/2.`
Dấu ”=” xảy ra khi `x=y=1/2.`
Vậy $MinA$`= 3/2 ⇔ x = y=1/2.`
`2)` Giả sử: `a^3+b^3+c^3 = 3abc`
`⇔a^3+b^3+c^3 -3abc =0`
`⇔a^3+b^3+c^3+3ab(a+b)-3ab(a+b) -3abc =0`
`⇔[a^3+3ab(a+b)+b^3]+c^3-3ab(a+b) -3abc =0`
`⇔(a^3+3a^2b+3ab^2+b^3)+c^3-3ab(a+b) -3abc =0`
`⇔(a+b)^3+c^3-3ab(a+b) -3abc =0`
`⇔[(a+b)^3+c^3]-[3ab(a+b) +3abc]=0`
`⇔(a+b+c)[(a+b)^2-(a+b)c+c^2] – 3ab(a+b+c)=0`
`⇔(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0`
`⇔(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0`
`⇔(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=0`
Mà `a+b+c=0`
`⇒(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=0`
`⇔0.(a^2+b^2+c^2-ab-ac-bc)=0` ( luôn đúng ) ⇒ giả sử đúng.
Vậy `a^3+b^3+c^3 = 3abc.`
Cho mình câu trả lời hay nhất nha. Cảm ơn!